Operating Systems

Shashwat Jolly Deepak Kumar Gouda

Outline

Introduction Processes and Threads Synchronization and Locking Memory Management

Introduction

What is an Operating System?

In simple terms, an interface between the user and the computer hardware.

Basic Computer Architecture

What happens when you turn on a computer?

Processes and Threads

Processes

- What is it?
- Ready queue
- Process scheduling
- Scheduling algorithms
 - FCFS
 - SJF
 - Priority
 - Round Robin
- Context switching

Threads

- What is it?
- Threads vs Processes
- User level threads vs Kernel level threads

Multiprogramming vs Multithreading vs Multiprocessing

Process Synchronization

Synchronization

- IPC
 - Shared memory
 - Message Passing
- Critical Section problem, Race condition
- Mutexes locking mechanism
- Semaphores signalling mechanism

Producer Consumer Problem

Read up its solution using semaphores

Dining Philosophers Problem

Read up its solution using semaphores

MPERIAL COLLEGE OF I

Explain Deadlock, and we'll hire you.

Hire me, and I'll explain it to you.

let's discuss the salary.

MPERIAL COLLEGE OF LACE

Explain Deadlock, and we'll hire you.

001

1 1 140 M. M.

11 140 March

Hire me, and fill explain it to you.

MPERIAL COLLEGE OF I ERING NEW

Explain Deadlock, and we'll hire you.

Hire me, and I'll explain it to you.

- What is it?
- Necessary conditions
 - Mutual exclusion
 - Hold and wait
 - No pre-emption
 - Circular wait

- What is it?
- Necessary conditions
 - Mutual exclusion
 - $\circ \quad \text{Hold and wait} \quad$
 - No pre-emption
 - Circular wait

- What is it?
- Necessary conditions
 - Mutual exclusion
 - $\circ \quad \text{Hold and wait} \quad$
 - No pre-emption
 - Circular wait

- What is it?
- Necessary conditions
 - Mutual exclusion
 - $\circ \quad \text{Hold and wait} \quad$
 - No pre-emption
 - Circular wait

- Prevention
 - Restructure system to disallow any of the conditions
- Avoidance
 - Allot resources in a way that you stay "safe"
 - Read up on "Banker's Algorithm"
- Recovery
 - Allow deadlocks, but recover when they happen

Memory Management

Physical and Logical Addresses

Physical Addresses

- Variables, instructions stored in RAM
- Actual address in the memory

Logical Addresses

- Abstracted view of main memory
- Symbolic Addresses

Physical and Logical Addresses

Physical Addresses

- Variables, instructions stored in RAM
- Actual address in the memory

Logical Addresses

- Abstracted view of main memory
- Symbolic Addresses

Physical and logical address space - everything addressable

Memory Management Unit

Pages and Frames

How does this mapping happen?

- Physical Address Space (RAM) divided into frames
- Logical Address Space divided into equal sized pages
- Load one page in one frame Paging

Paging

Logical Address Space

RAM Frames

Code, Variables and Other Data

Memory Mapping (MMU)

Page Table

- Logical Address -> Page number + Offset
- Physical Address -> Frame Number + Offset
- Basically have to obtain page number from frame number

Page Table

Page Table

Read up "valid-invalid bit" in page table

Page Fault

Ways to load process into RAM

- Load the entire process can waste memory
- Load only required pages what if more pages are required
- Required page not available Page Fault
- Solution?
- Bring in more pages **Demand Paging**

Page Replacement

Assume: We need to bring in one page

- 1. Find page on disk
- 2. Find a free frame
 - a. If free frame present, use it
 - b. If not, select a **victim frame**
 - c. Write victim frame to disk
- 3. Copy required page into frame

Page Replacement Algorithms

- FIFO
- LRU
- LFU
- MFU
- Read up on "Second chance algorithm" LRU approximation

Questions?

Thank You

Acknowledgements

Images taken from Operating System Concepts (Galvin and Gagne) 9th Edition