Computer Networks An Introduction

Ameya Daigavane Deepak Kumar Gouda

What does the Internet look like?

Network Protocols

- Specify 3 aspects:
 - What kinds of messages are to be sent,
 - The format of these messages
 - The actions taken when messages are received/sent.

The Internet is completely based on protocols! Examples: HTTP, TCP, IP!

A Functional Description

Based on the functions/services these protocols provide!

The Protocol Stack

	Application
	Transport
	Network
	Link
ļ	Physical

a. Five-layer Internet protocol stack

-	
	Application
	Presentation
	Session
	Transport
	Network
	Link
	Physical
-	

b. Seven-layer ISO OSI reference model

The Application Layer

Sockets

Provide an interface to applications to read/write data.

HyperText Transfer Protocol (HTTP)

- Web's application-layer protocol (heart of the Web)
- It uses TCP as its underlying transport protocol
- Requests: GET, POST
- http:// vs https://, HTTP vs HTML

GET /somedir/page.html HTTP/1.1 Host: www.someschool.edu Connection: close User-agent: Mozilla/5.0 Accept-language: fr HTTP/1.1 200 OK Connection: close Date: Tue, 09 Aug 2011 15:44:04 GMT Server: Apache/2.2.3 (CentOS) Last-Modified: Tue, 09 Aug 2011 15:11:03 GMT Content-Length: 6821 Content-Type: text/html (data data data data data ...)

Web Caches (Server-Side Proxies)

- Faster responses due to caching
- Saves internet bandwidth
- Traffic monitoring

Other Protocols

- FTP (file transfer)
- SSH (remote logins)
- SMTP (emails)

Control and data connections

Domain Name Service

- Maps domain names (like *www.google.com*) to IP addresses (like 173.121.64.3).
- Can be used to implement simple load distribution.
- Works in a distributed manner over multiple servers

What happens when you type a URL in the web browser?

The Transport Layer

The Transport Layer

- Takes **messages** from applications and converts them to **segments**, by adding headers (control information for the transport layer).
- The network layer connects two hosts. The transport layer connects two processes running on these hosts.
- Also, provides **error-checking** (via checksums)!

Two important protocols - UDP (User Datagram Protocol) and TCP (Transmission Control Protocol).

Which Protocol Do I Choose?

	Application-Layer	Underlying Transport		
Application	Protocol	Protocol		
Electronic mail	SMTP	TCP		
Remote terminal access	Telnet	TCP		
Web	HTTP	TCP		
File transfer	FTP	TCP		
Remote file server	NFS	Typically UDP		
Streaming multimedia	typically proprietary	UDP or TCP		
Internet telephony	typically proprietary	UDP or TCP		
Network management	SNMP	Typically UDP		
Routing protocol	RIP	Typically UDP		
Name translation	DNS	Typically UDP		

TCP Functions

UDP only performs process-to-process multiplexing/demultiplexing, and error-checking.

TCP does a lot more more:

- Reliable Data Transfer
- Congestion Control

Demultiplexing/Multiplexing for Processes

Many processes (application-layer) use the same transport layer protocol. How do transport-layer protocols distinguish between messages for different processes?

Solution: Identify sockets by port number, and list the ports in the headers.

- UDP sockets: 2-tuple (destination IP, destination port number)
- TCP sockets: 4-tuple (destination IP, destination port number, source IP, source port number)

Segment Structures

UDP 8 bytes TCP 20 bytes

TCP Connection Establishment (The 3-way Handshake)

Note how the sequence numbers change!

Reliable Data Delivery

- Ensure that the receiver has actually received the data.
- Multiple aspects:
 - Acknowledgements
 - Sequence Numbers
 - Timers
 - Flow Control

Flow Control

- Any sender should not overflow the receiver's buffer!
- The receiver indicates how much space it has in the 'receive window' field in the TCP header.

LastByteSent - LastByteAcked \leq rwnd

Congestion Control

- Senders should also not overflow the queues/buffers over links.
- Sender maintains a variable 'congestion window'.

LastByteSent - LastByteAcked ≤ min{cwnd, rwnd}

The Network Layer

Internet Service Model

Network Architecture	Service Model	Bandwidth Guarantee	No-Loss Guarantee	Ordering	Timing	Congestion Indication
Internet	Best Effort	None	None	Any order possible	Not maintained	None
ATM	CBR	Guaranteed constant rate	Yes	In order	Maintained	Congestion will not occur
ATM	ABR	Guaranteed minimum	None	In order	Not maintained	Congestion indication provided

IP Addresses

Circuit Switching vs Packet Switching

Routing, Subnet

- Forwarding tables
- Public IP vs Private IP

Prefix Match	Link Interface		
1001000 00010111 00010	0		
1001000 00010111 00011000	1		
1001000 00010111 00011	2		
otherwise	3		

DHCP Dynamic Host Configuration Protocol

What if you don't have an IP?

Thank You!

Acknowledgements

Images taken from Computer Networking: A Top Down Approach (by Kurose and Ross) 6th edition.