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Abstract—Blockchain technology is finding its application in
a wide range of areas. Due to the highly decentralized and
distributed nature of blockchain technology, it is essential to un-
derstand the behaviour of a system before its actual deployment.
In this paper, we introduce the design and architecture of our
blockchain simulator, BlockEval, which mimics the behaviour
of concurrent operations that occur in a real-life blockchain
system. We have established the correctness of our simulator
by comparing it with an independent model that is built from
the real Bitcoin-transactions data using deep-learning techniques.
Unlike existing validation procedures which do not scale to large
topologies, our method is scalable and efficient in terms of
time and compute-infrastructure requirements. The observations
made using our simulator are found to match with the results
obtained from the model trained on real Bitcoin-transactions
data.

Index Terms—Blockchain, Simulation, Simulator validation,
Deep Learning

[. INTRODUCTION

In recent years, blockchain technology is finding its applica-
tion in a range of diverse domains such as online transactions
[1], authenticating artworks [2] and governance [3]. The
main characteristic that makes blockchain different from a
traditional system is that it does not depend on any central
authority. However, all the participants in a system still share
a common logical state which is typically arrived at using a
decentralized consensus algorithm.

While decentralization alleviates the dependency on a single
entity to maintain the state of the entire system, it introduces
several other challenges, such as detection and correction of
bugs [4], execution delays, performance [5], and security [6].
A large blockchain system can consume a high amount of
power. For example, the energy required to run the Bitcoin
network for four seconds is sufficient to fulfill one household’s
total electricity requirement for one-year [7]. Thus, it has
become more critical than earlier to understand the behaviour
of a decentralized application before its deployment.

The development of decentralized apps for a large user base
is a difficult task. One of the ways to understand a system
is to do a test deployment and observe its behaviour. For a
user or an organization, emulating a blockchain framework
is expensive. Such an approach has been used earlier, for
instance, in BlockBench [8] and the Bitcoin P2P network [9]
nodes were deployed on actual machines or cloud. Obviously,

this method is not only expensive but also cannot possibly give
a good idea about real implementation due to the significant
difference in the size of the test setup and actual deployment.
Besides, a significant amount of time and effort is also
needed to set up and maintain the experimental network. Apart
from this, it is also challenging to foresee the implication of
upgradation of a protocol in use. In a real network, solutions
such as soft forks and hard forks are possible; these unforeseen
circumstances might lead to permanent splits in the network
[10]. Similar difficulties arise in the development and testing
of new consensus algorithms and blockchain architectures.
Performing tests on a massive scale on a real test-bed is
therefore not a viable option.

An alternative to real test deployment scenario is to use a
simulator tool to study the behaviour of a system. The avail-
ability of a simulation tool solves many of the problems that
are mentioned above. The availability of simulator can also
support test-driven development and extreme programming.
However, it introduces a new challenge of ascertaining the
correctness of a simulator itself. In this paper, we illustrate the
design of a new simulator, BlockEval, and also overcome the
challenge of validation. In particular, our main contributions
are as follows.

(i) A modular blockchain simulation framework that can
simulate a Proof-of-Work (PoW) blockchain network up
to transaction-level operations, and

(i) A deep-learning based technique to build a model from
the real blockchain network to evaluate the correctness
of any blockchain simulator framework. We validate our
simulator using the same technique.

We also draw several relational observations from the simu-
lated data.

The remainder of the paper is organised as follows. In Sec-
tion II, we review the existing simulators and their approach to
the problem. In Section III, we introduce our simulator, Block-
Eval, and present its architecture. In Section IV, we present a
technique to check the correctness of blockchain simulators
and use it to verify the observations that are drawn from
BlockEval simulations. The insights gained from this data are
presented in Section V. Finally, in Section VI, we conclude
and mention some directions for future improvements.
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II. BACKGROUND AND RELATED WORK

We first give a brief overview of the Blockchain terminology
used in the paper along with a high-level description on how
Blockchain works.

Transactions are the atomic units of any Blockchain. A
transaction represents the transfer or creation of an asset or
entity. Many such transactions are combined into a bigger
unit, called as a block. A Blockchain consists of multiple
blocks linked together in a list using cryptographic hash
values. A fork occurs when a Blockchain diverges into two
potential paths due to a change in protocol or when two
miners propose a block at the same time. A fork results in
multiple chains diverging from the forking point until one
chain becomes longer than the other. The network is said to
reach a consensus when it decides which branch to accept as
the truth. A Blockchain network consists of different types of
nodes such as miners and full nodes. Miners are responsible
for generating blocks in the network, and full nodes simply
store a copy of the entire blockchain.

Transactions are generated and multi-cast from multiple
sources who wish to transfer assets to a different address. All
miners receiving a transaction store it into their local memory
pool (or mempool). As soon as they are idle, they extract
a subset of transactions from their mempool, and generate
a block consisting of those transactions, hence proposing
a block. There are various block proposal algorithms like
Proof-of-Work (PoW), Proof-of-Stake (PoS), Proof-of-Activity
(PoA) and Proof-of-Burn (PoB). Whenever a node receives a
block, it adds the block to it’s local Blockchain instance.

We now discuss three recently proposed simulators, namely
Bitcoin-Simulator [9], VIBES [11] and BlockSim [12].

Bitcoin-Simulator [9] has been developed to study the
impact of network-layer parameters on the security of Proof-
of-Work blockchains. The simulator is built on ns-3, a dis-
crete event network simulator and is implemented in C++. It
keeps track of the events scheduled to execute at a particular
simulation time and executes them in sequential order. The
ns-3 simulator is not scalable to large topologies (e.g. 1000
nodes) [13]. Bitcoin-Simulator does not model the propagation
of transactions. All parameters captured are at the block-level,
and transaction-level statistics cannot be obtained from the
simulations.

VIBES [11] has been developed to simulate large-scale peer-
to-peer networks. It is built using Scala, and it leverages multi-
threading to scale the network to tens of thousands of nodes.
It uses Actor Models [14] of the Akka [15] framework to
simulate nodes. The nodes use asynchronous message passing
for communication. The network consists of a Master node
or Coordinating Actor that controls the execution of events in
the network. It is the only entity that can issue a request to
a node to do work, that is, mine a block of transactions. The
Master actor randomly asks the nodes to create a transaction,
and the nodes push the request to their mailing list, which is
a priority queue sorted according to the time of execution. All
the nodes ask for permission from the Master Node to mine

the block. The Master node collects all the requests from the
nodes, sorts them in increasing order of execution timestamp
and issues work requests to the nodes in order. A request for
work is executed in a separate thread, and the process repeats
recursively after mining of the blocks.

The main limitation of VIBES is that it does not implement
any validation method to check the correctness of the simu-
lated data. The focus is on the consistency of the simulator
results, rather than similarity with real-world metrics. Further,
the presence of a central controlling entity, the Master actor,
deviates from the distributed nature of a blockchain network.

BlockSim is another simulation framework that aims to
assist in the design, implementation, and evaluation of existing
or new blockchains. BlockSim is a discrete event simulator,
implemented in Python. It consists of a Simulation World
component, which is responsible for handling the configuration
parameters of the simulation. Transaction and Node Factory
are responsible for creating transactions and nodes used dur-
ing the simulation. The Monitor captures metrics during the
simulation and stores them in the Report component.

BlockSim’s validation method involves a comparison of
the simulated results with statistics drawn from a two-node
private Ethereum network deployed on AWS. Several crucial
blockchain phenomena, such as forking, manifest only in
larger topologies, and no validation tests have been conducted
on such scale.

An important observation arising from these reviews is that
none of the earlier blockchain simulators has attempted to
validate their results for a large number of nodes.

III. ARCHITECTURE OF BLOCKEVAL

We now present the architecture of our simulator and its
components. We also give a brief workflow of BlockEval
along with its input and output parameters. BlockEval can be
extended to simulate any blockchain framework. In the fol-
lowing section, we discuss the Proof-of-Work implementation
of BlockEval. A similar procedure may be followed to extend
BlockEval to other protocols like Proof-of-Stake. Using the
current implementation, we can modify the input parameters to
extend BlockEval to any Proof-of-Work blockchain network.
The source code of BlockEval has been made available in
a public repository on GitHub [16]. Since in Proof-of-Work
blockchains, blocks are proposed by Miner nodes, we use the
terms Miner and Proposer interchangeably.

We also provide the pseudo-code for the Miner class, which
is a central component of our simulator.

A. Framework

It should be easy for end-users to customize a simulation
framework for specific use cases. Python was chosen as the
language base for our simulation framework because of its
broad user base, exhaustive open-source library support and
omnipresent applications. SimPy [17] is a popular process-
based discrete-event simulation framework developed in stan-
dard Python.
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It provides various tools and abstractions that make it easy
to develop a simulation tool. The simulated time scale can
be set to either match the real time scale or to simulate as
fast as possible. The user can also manually step through the
simulated atomic events. The behaviour of the components of
our simulation framework is modelled using Processes. The
processes are part of a SimPy environment, and inter-process
interaction happens through the environment using various
events such as interrupts or SimPy resources, such as Store.

These processes are defined as Python generator func-
tions that create events, yield them and suspend themselves
for a Timeout period. After the Timeout period, the SimPy
environment resumes the suspended processes. The SimPy
environment executes the events and then fast-forwards or
jumps onto the next event.

B. Network Components

The entire network is modelled as a Network object which
consists of Transaction Factory, Full Node and Miner objects,
each of which simulates the real-world entities corresponding
to their name.

Transaction factory: The Transaction factory is imple-
mented as a generator function, which gets called when the
network is initialized. It generates a transaction and broadcasts
it to a random number of full nodes and miners. The degree of
connectivity of these nodes is specified as an input parameter.
After transaction generation, it suspends itself for a random
period of time, which is drawn from a probabilistic distribution
with the distribution parameters defined by the user.

Pipes: Pipes are instances of the SimPy Store resource,
which models the production and consumption of objects.
They are customised to act as the propagation channels
among nodes. Each Pipe object consists of a source and a
destination location which represent the connecting nodes. The
propagation delay of each pipe is drawn from real-world data,
based on the locations of source and destination nodes. Hence,

whenever an object, that is, a block or transaction is added to
a pipe, the destination node receives the object after a timeout
value simulating the propagation delay. The implementation of
propagation delay leads to observations of crucial blockchain
phenomena such as forking and stale blocks.

Full nodes: Full nodes keep a copy of the complete
blockchain and are responsible for verification and broadcast
of the transactions as well as blocks. These have been imple-
mented as objects of the Full Node class. The nodes spawn at
random geographic locations and are connected to other full
nodes and miners. The degree of connectivity is defined as an
input parameter. The nodes encompass a transaction pool or
mempool and a blockchain. When a node receives a block, its
content is verified. If the block has not been received before,
it is appended to the local blockchain instance. The block
is then flooded across the network. If a block received by a
node has an invalid hash, the node fetches the local blockchain
instances from its neighbours and updates its instance. During
the update, if forking is observed, then the longest chain
prevails, and the rejected blocks are classified as Stale or
Orphan blocks.

Miners: Miners are a subset of full nodes. They function
as full nodes along with the added responsibility of block
generation. Hence, the Miner class inherits the Full Node
class and implements a block generator process as a Python
generator. It generates a block and suspends itself for a random
timeout value, which simulates the time required to brute-force
and find a solution to the cryptographic hash problem in real
Proof-of-Work blockchains.

Once a miner generates a block with some selected trans-
actions from its transaction pool, it broadcasts the block to
its neighbours. The transactions are selected on the basis of
higher miner reward. Once a block is received by a miner, its
timeout is interrupted and it starts its attempt to generate a new
block. The complete implementation is given in Algorithm 1.

Transaction pool: Each node owns an instance of the
TransactionPool class, which simulates mempools in real
networks. They hold transactions received by the node in a
custom priority queue in order of decreasing miner reward.
Transaction pools perform the broadcast function of the nodes,
that is, they broadcast the transactions on behalf of the node
to its neighbours.

C. Workflow

The simulation begins by instantiating an object of the
Network class, with input parameters specified in a JSON
configuration file (Table I). Node and Pipe instances are
initialized and added to the Network object, and the transaction
factory begins the generation and propagation of transactions.
All the propagation happens through the Pipe instances. All
transactions received by a node are added to its local trans-
action pool. These are maintained in the order of decreasing
miner reward. Further, received transactions are broadcast to
its neighbouring nodes.

The primary function of a Miner is its block generation
function, which commences from the moment of instance
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Algorithm 1 Miner
1:t+ 0
2: GENERATEBLOCKS()

3: function GENERATEBLOCKS()

4: sleep_time < GETSLEEPTIME()
5: while ¢ < sleep_time do

6: if interrupted then

7 RECEIVEBLOCK()

8 break

9: end if

10: t—1t+1

11: end while

12: block < GETBLOCK()

13: transactions < GETTRANSACTIONS()
14: block.add(transactions)

15: network.broadcast(block)

16: end function

17: function RECEIVEBLOCK(block)

18: INTERRUPTBLOCK GENERATION()
19: if 1sVALID(block) then

20 local_blockchain.append(block)
21: else

22: UPDATEBLOCKCHAIN()

23: end if

24: end function

25: function UPDATEBLOCKCHAIN()

26 all_blockchains +— RECEIVENEIGHBOURCHAINS()
27: for b < all_blockchains do

28: if length(b) > length(local_blockchain) then
29: local_blockchain <+ b

30: end if

31 end for

32: end function

initialization. In this function, a Miner gathers transactions
from its local pool and attempts to generate a block. To
generate a block, a Miner has to suspend for a timeout value,
which is drawn from a random distribution. The distribution
parameters are estimated from real block generation data. This
timeout can be interrupted if the Miner receives a block from
its neighbour. If the received block is valid, the Miner adds it
to the local blockchain instance, broadcasts it, and restarts its
attempt to generate a block. Generated blocks are broadcast
to neighbouring nodes which are further propagated across
the network. An overview of the simulator workflow has been
depicted in Figure 1.

The interplay of network connectivity, propagation delays
and block generation time lead to forking in the network. For
instance, consider two miners M and My which are initialized
at time 0. Let us assume that miner M/, generates a block
in time ¢; and miner M5 in time ¢, such that ¢; < ¢ and
the propagation delay between My and Ms is t4 such that

TABLE I

SIMULATOR PARAMETERS

Input parameter

Description

Block generation interval

Time interval between block proposals

Transaction generation interval

Time interval between transactions

Miner count

Number of miners

Full node count

Number of full nodes

Block capacity

Number of transactions in a block

Transaction value

Amount of asset being transferred

Miner reward percentage

Fractional fee for mining transactions

Propagation delay

Probability distribution parameters

Possible node locations

Set of geographical locations

Output parameter

Description

Geographical node distribution

Percentage of nodes in each location

Block propagation

Mean and quantile values

Block

Includes block count, mean block size

Transaction waiting time

Mean and quantile values

Mining reward

Mean and quantile values

Number of stale blocks Number of orphaned blocks

Number of forks Number of forking instances

tq > to—t;1. In this case, M; generates the block at ¢; (before
Ms) and by the time the interrupt sent from M is received
by Ms, M has already mined its block and propagated it to
its neighbours. Hence, we have two different blockchains in
the network, both of which are valid. Thus, we observe a fork
in the network.

IV. VALIDATION

We now discuss the need for validation, the motivation for
our novel validation method, and the method itself. We also
present a comparative analysis of the validation and simulator
results for BlockEval.

A validation criterion is necessary for any simulator to
prove its reliability and correctness. While significant research
has been done on validating traditional network simulations,
no methods exist for verifying the correctness of large-scale
blockchain simulations. Attempts have been made to validate
simulated blockchain data by comparing it with emulated
results. However, such methods cannot be implemented to
validate large-scale networks, owing to physical and economic
constraints. Critical blockchain phenomena such as forking are
only observed in large-scale networks.

Hence, we put forth a new performance evaluation method
by leveraging the power of machine learning, which can
be used for validating large-scale simulations as well. We
use real-life Bitcoin transaction data [18] to train the ma-
chine learning model. The model is then used to get system
behaviour and is checked against the observed behaviour
obtained from our simulator (see Figure 2).

A. Method

Our validation method utilizes the data collected in [18],
which has been drawn from the Bitcoin network directly
using blockchain.info and the open-source client bitcoind. Any
statistical results drawn from this data will be independent
of any assumptions or bias developed when drawing data to
validate a simulator. Some parameters in these sources are
difficult to model in a simulator (for instance, the USD to BTC
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TABLE II
MODEL PERFORMANCE - TRAINING DATA
medianTxValue | medianFee | blockSize | blockCount
XGBoost |_Relative Error 5.01e-2 2.01le-2 1.83e-2 3.67e-2
RMSE 20.09 6.97¢-5 3.63¢3 577
ANN Relative Error 132 3424 26.58 6.65
RMSE 205.40 2.55e-4 0.17 24.40
TABLE III
MODEL PERFORMANCE - TEST DATA
medianTxValue | medianFee | blockSize | blockCount
XGBoost Relative Error 7.05e-2 5.73e-2 3.42e-2 7.65e-2
RMSE 22.31 2.06e-3 1.67e-2 12.07
ANN Relative Error 22.13 17.13 13.02 3.28
RMSE 183.61 2.66e-4 0.18 24.18
Model been studied through the use of Hidden Markov Models based
Parameters BlockEval System on Kernel Bayes Rule. Further, predicting future network
ockbva Behaviour traffic using Recurrent Neural Networks (RNN) with Long
Short Term Memory (LSTM) units has also been attempted.
Bitcor L2 Norm  In [20], attempts have been made to detect intrusion attempts
tteotn in incoming network traffic. The proposed system was built

Transaction Data [Deep Learning [

Fig. 2. BlockEval Validation Approach

conversion rate). Exploratory data analysis was performed to
select relevant features which were used to train our validation
model, treating independent and dependent features as input
and output features, respectively. The refined data used for
training consists of 10 features including Mempool Size (.S,,),
Transactions per Second (v), Median Confirmation Time (i;),
Transactions per Block (), Block Generation Frequency (w)
and Transaction Fee (¢). The existing simulators discussed
in Section II differ in many of these input and output fea-
tures, which limits the application of our trained model for
their validation. This was the primary motivation to develop
BlockEval, which has similar input and output features as the
available data. This does not, however, limit the applicability
of the validation procedure to other simulators.

A predictive model M is developed, which is trained on the
input vector X and the output vector Y:=(¢, 7, t.). Vector X
is constructed using parameters of the simulator network, the
results of which are to be validated. X i _is provided as input to
M and its prediction is denoted as Y. X is also provided
as input to BlockEval, with resultant vector Y. Similarity
between Y and Y, which can be measured by a low value

2
of ’Y — Yﬁ is a good indicator of the correctness of the

simulator (Figure 3). Clearly, with this validation method,
there is no bound on the number of nodes in the network.

B. Deep Learning in Network Parameter estimation

Deep-learning techniques have been used in the recent past
to study computer networks and its peripheries. In [19], the
relationship between traffic volume and network flows has

using Deep Belief Networks composed of Restricted Boltz-
mann Machines and trained on NSL-KDD dataset. In [21],
Random Neural Networks have been used to allocate optimal
radio parameters to users of a Radio Resource Management
framework and ultimately improve the performance of an LTE
uplink system.

While deep-learning methods have been utilized for various
purposes earlier, to best of our knowledge no earlier work
has used deep-learning techniques to analyse and validate the
parameters of a network simulator.

C. Model Architecture

Two methods were explored for developing the predictive
model : 1) Artificial Neural Networks (ANNs) and 2) Decision
tree based ensemble using XGBoost. We also perform a
comparative analysis of the two and list our findings in Table
IT and Table III. The ANN and XGBoost model hyperparam-
eters were found using a GridSearch [22] algorithm which
minimizes the training loss of the models.

ANN: ANN is a very powerful non-linear function ap-
proximator given sufficient number of hidden neurons. It
consists of several interconnected neurons arranged in layers.
Each neuron takes a value as input and performs a non-linear
activation on it. The result is then propagated to the next layer.
In the training phase, the weights of connections between
two adjacent layers of neurons are optimised to minimize the
prediction errors. Backpropagation using gradient descent or
more recently Adaptive Moment Estimation (Adam) [23] is
commonly used to train a neural network.

The deep neural network developed for validation consists
of fully connected neurons, with seven hidden layers. Leaky
ReLU [24] activation fEnction was used for each layer . As
the response variable Y is continuous, Root Mean Squared
Error was used as the loss function. The training of the
model is performed using Adam optimizer. To stabilize the

285

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on August 31,2025 at 21:34:06 UTC from IEEE Xplore. Restrictions apply.



2021 13th International Conference on Communication Systems & Networks (COMSNETS)

Y

Y | tput Layer
|rw||.afec[ T o ]L‘u: L
| !model
2 Block
x - E Gcn:'nr:uon Miners ‘ Full Nodes L2 Norm
i} — R
> 5 {
gl e |
B E Intiakser Factoey
Fig. 3. Validation Flow
training procedure, Batch Normalization [25] technique was TABLE IV
used. Dropout layers, as well as early stopping callbacks, were COMPARATIVE RESULTS
used to prevent over-fitting. The model consisting of 3,27,951 XGBoost | BlockEval
parameters was trained up to 70 epochs. medianTxValue (USD) | 397.87 403.02
. o : _ : : normalised blocksize 0.402 0.459
XGBoost: Decision Tree is a non-parametric supervised — FianTee 58003 53523

learning method used for classification and regression. The
target value is predicted by learning simple decision rules
inferred from the data features. A tree ensemble consists of a
finite set of decision trees, which are used in association for
better predictive performance. The final prediction for a given
data sample is the sum of predictions from each tree. In tree
ensemble models, for a given dataset of m features and n data
samples, K additive functions are used to predict the output.
In the training phase, a greedy approach is used to optimize the
decision functions at each level of a tree so as to minimize the
loss. XGBoost [26] is a scalable gradient boosting framework
to train tree-based ensemble models. Gradient tree boosting
has been successfully used in classification [27], learning to
rank [28], structured prediction [29] as well as other fields.

The XGBoost model developed for validation consists of 50
estimators along with L1 and L2 regularization terms of value
10. The objective function was set to minimize the squared
error.

D. Observations

The fitness of the model was evaluated using validation
and test datasets. Tables II and III consist of the results of
performance evaluation of the model and Table IV compares
the BlockEval results to the predictions of the model.

It can be observed from Tables II and III that XGBoost con-
sistently outperformed ANN for all parameters. This indicates
that RMSE and relative error values can be further improved
with better model architectures and machine learning methods.

The observation that a neural network can predict results
comparable to those of a simulator raises a compelling ques-
tion: can we replace a simulator with a neural network? In the
current stage, we cannot sufficiently rely on a neural network
as it has to be built for a highly specific objective function.
Any deviation in input data distribution can produce undefined
variation in results, which cannot be explained given the fact
that the behaviour of hidden layers of deep neural networks
is still under research and has not been fully understood.
Further, building such a model requires a considerable amount
of data that is not readily available, especially when we are
trying to simulate an environment that highly prizes privacy
and anonymity. Furthermore, simulators have the advantage of
being able to produce data at atomic levels, while a prediction
model produces a singular output value. Hence, building a
generalized version of a deep learning model seems distant
as of now and a simulator has many advantages over a deep
learning model.

E. Generalisation

The procedure described here can be applied to any
blockchain framework. Changing the simulator parameters, the
model architecture and the input data will enable validation of
virtually any blockchain simulator. For instance, to validate
Proof-of-Stake blockchain simulators, an appropriate model
architecture needs to be developed, and trained on Proof-of-
Stake blockchain data.
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V. OBSERVATIONS

Simulations were run for varying input parameters on an
Ubuntu 18.04 machine running on an Intel i7-7700HQ proces-
sor with 16 GB RAM. The insights drawn from the simulated
data are shown in Tables V and VL.

BlockEval generates a log of all events in the simulated
environment from which several parameters can be drawn. The
parameters of interest may vary depending on the use case. A
system aiming to handle higher volume of transactions would
consider the transaction confirmation time as a useful metric.
Further, stale block generation rate can be used as an indicator
of system efficiency. Similarly, the degree of network graph
can be varied to examine the partition tolerance of a system
architecture.

A. Simulation time vs Number of nodes
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Fig. 4. Simulation time vs Number of nodes

Simulation time refers to the actual time taken to simulate
a fixed number of virtual seconds. It can be observed from
Figure 4 that the simulation time increases with an increase in
the number of nodes. This can be explained by the fact that
more nodes imply a greater number of blocks and transactions
being propagated in the network, which results in an increase
in the total propagation time. For a network of n nodes, where
each node has a degree 2, the total number of connections
is O(n * ). This quadratic trend can also be observed in
the simulated data. BlockEval can realistically be used to
simulate a private blockchain network deployment of hundreds
of nodes.

Further, we observe that our simulator performed similar to
Bitcoin-Simulator. It is noteworthy that Bitcoin-Simulator is
developed in C++ using the ns-3 framework, while BlockEval
is based on Python. So, the similarity in simulation times is
an indication of the efficiency of our simulator.

B. Number of forks vs Degree of connectivity

Forking refers to the presence of two or more valid
blockchain instances in the network. The fork is resolved when
subsequent blocks are added, and one of the chains becomes
longer than the alternatives. It can be observed from Figure
5 that the number of forks decreases with an increase in the
degree of connectivity. In a fully-connected network, a block
proposed by a node would reach all other nodes before they
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Fig. 5. Number of forks vs Degree of connectivity
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Fig. 6. Mean waiting time vs Degree of connectivity

can propose a block. This decreases the probability of a fork in
the network. However, as the degree of connectivity decreases,
nodes would receive blocks after a considerable delay, leading
to fewer interruptions in block generation. Hence, many nodes
would propose blocks at the same time, leading to more forks
in the system.

In a private blockchain deployment that demands high con-
sistency, limiting the number of forks in the system requires
a higher degree of connectivity, which is expensive. Hence, a
trade-off exists between ensuring consistency and limiting the
degree of connectivity.

C. Median waiting time vs Degree of connectivity

The waiting time of a transaction is the time it takes for
the transaction to be included in a proposed block. It can
be observed from Figure 6 that the median waiting time
decreases with increasing degree of connectivity. This can be
explained by the fact that decreasing the connectivity implies
that transactions would not reach a larger number of nodes
in a short time. So, fewer miners work on any particular
transaction, leading to an increase in the waiting time.

A lower median waiting time implies a lower expected
confirmation time for a transaction. Imposing an upper limit
on the transaction confirmation time requires a higher degree
of connectivity. Hence, a trade-off exists between achieving
faster transaction confirmations and limiting the degree of
connectivity.
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D. Simulation time vs Degree of connectivity

It can be observed from Figure 7 that the simulation time
increases with increasing degree of node connectivity. This
can be explained by the higher number of transaction and
block propagations in the system due to a greater number of
neighbours.

TABLE V
VARYING DEGREE OF CONNECTIVITY (N = 128 NODES)

Degree of Number of | Median waiting time | Simulation time
connectivity forks (in seconds) (in seconds)
n/8 110 1153.60 19.58
n/4 69 688.77 42.36
n/2 37 588.85 89.20
n 0 393.54 199.79
TABLE VI
VARYING NUMBER OF NODES (FULLY CONNECTED NETWORK)
Number of | Simulation time | Number of | Number of
nodes (in seconds) blocks forks
250 458.70 46 39
500 1950.76 52 45
1000 8218.03 59 52
2000 39412.92 72 65

E. Number of blocks vs Number of nodes

Increasing the number of nodes leads to an increase in
the number of blocks proposed (Figure 8). This trend can

be attributed to the increase in miners, leading to a higher
frequency of block generation. To counter this effect, the dif-
ficulty of the cryptographic problem is increased periodically
in Bitcoin. This maintains the block proposal rate at 1 block
per 10 minutes.

While scaling a private blockchain deployment to a higher
number of nodes, maintaining a constant block proposal rate
requires the difficulty to be adjusted accordingly. In such a
scenario, the linear relationship between the number of nodes
and the number of blocks generated, as demonstrated by the
simulated data, can help in determining how the difficulty
needs to be adjusted.

FE. Number of forks vs Number of nodes

With an increase in the number of nodes, we also observe
an increase in the number of forking instances in the system.
A higher number of nodes implies a greater probability of
simultaneous block proposals, hence increasing the number of
forks.

VI. CONCLUSION

We have introduced an extensive, modular simulator for
blockchains and an evaluation technique for blockchain sim-
ulators based on deep learning. Our simulator can be used
to gather insights and metrics and test the performance of
private blockchain networks before actual deployment. Im-
proving scalability of blockchains has been an open research
problem and side chains, in which transactions are settled
between parties in a quick manner outside the main chain have
been proposed to accelerate the performance of blockchains.
Further, the tradeoff between security and efficiency has been
a major research topic in permissioned and permissionless
blockchains. BlockEval can be used to simulate, analyze and
study such open problems.

The correctness of the simulator has been shown by our
deep learning model trained on real-world data. Further, spe-
cific relational observations have been drawn from the simula-
tor results. The novel validation method proposed can be used
to evaluate the correctness of any blockchain simulator. To the
best of our knowledge, BlockEval is the first simulator to have
been tested against actual Bitcoin statistics. In comparison to
existing validation procedures such as emulating a blockchain
network, which does not scale to large topologies, our method
is scalable and efficient in terms of time and capital.

Simulation results have been drawn up to 2000 nodes, which
have been validated against actual Bitcoin data. However, there
is a scope of improvement to both the simulator and the val-
idation architecture. For instance, the addition of propagation
latency data with sufficient variance will improve the accuracy
of simulation results. Further, our deep learning model is
based on Bitcoin data, a similar procedure can be followed
for validating the simulation framework for other blockchain
architectures.
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